Dissertation (Metadaten)
Titel:Dynamics of exponential maps
 
Autor:Lasse Rempe
 
URN:NBN:urn:nbn:de:gbv:8-diss-7816
 
Fakultät:Mathematisch-Naturwissenschaftliche Fakultät
DDC Sachgebiet:510 Mathematik
 
Datum der mdl. Prüfung:08.07.2003
 
Referent(in):Prof. Dr. Walter Bergweiler
Korreferent(en) Korreferentin:Prof. Dr. Alexandre Eremenko, Prof. Dr. Dierk Schleicher
 
Beschreibung:This thesis contains several new results about the dynamics of exponential maps $z\mapsto \exp(z)+\kappa$. In particular, we prove that periodic external rays of exponential maps with nonescaping singular value always land. This is an analog of a theorem of Douady and Hubbard for polynomials. We also answer a question of Herman, Baker and Rippon by showing that the boundary of an unbounded exponential Siegel disk always contains the singular value. In addition to the presentation of new results, the thesis also aims to give an overview of the current state of knowledge on the dynamics of exponential maps.
 
Schlagworte:Exponentialabbildung , dynamical systems, dynamische Systeme, function theory, Funktionentheorie, holomorphic dynamics, holomorphe Dynamik, exponential maps, Exponentialabbildungen, Julia set, Juliamenge
 
Dokumente:
d781.pdf (4.790 kB)    ZIP generieren   Details >>